
DynamoDB-mock Documentation
Release 0.4.0

Jean-Tiare Le Bigot

November 16, 2012

CONTENTS

i

ii

CHAPTER

ONE

OVERVIEW

DynamoDB is a minimalistic NoSQL engine provided by Amazon as a part of their AWS product.

DynamoDB is great in production environement but sucks when testing your application. Tables needs roughtly 1
min to be created, deleted or updated. Items operation rates depends on how much you pay and tests will conflict if 2
developers run them at the same time.

ddbmock brings a tiny in-memory(tm) implementation of DynamoDB API. It can either be run as a stand alone server
or as a regular library helping you to build lightning fast unit and functional tests :)

ddbmock is not intended for production use. It will lose your data. you’ve been warned! I currently recommend the
“boto extension” mode for unit-tests and the “server” mode for functional tests.

1

http://aws.amazon.com/dynamodb/

DynamoDB-mock Documentation, Release 0.4.0

2 Chapter 1. Overview

CHAPTER

TWO

DOCUMENTATION

2.1 User guide

2.1.1 Getting started with DynamoDB-Mock

DynamoDB is a minimalistic NoSQL engine provided by Amazon as a part of their AWS product.

DynamoDB is great in production environement but sucks when testing your application. Tables needs roughtly 1
min to be created, deleted or updated. Items operation rates depends on how much you pay and tests will conflict if 2
developers run them at the same time.

ddbmock brings a tiny in-memory(tm) implementation of DynamoDB API. It can either be run as a stand alone server
or as a regular library helping you to build lightning fast unit and functional tests :)

ddbmock is not intended for production use. It will lose your data. you’ve been warned! I currently recommend the
“boto extension” mode for unit-tests and the “server” mode for functional tests.

Installation

$ pip install ddbmock

Example usage

Run as Regular client-server

Ideal for test environment. For stage and production I highly recommend using DynamoDB servers. ddbmock comes
with no warranty and will loose your data(tm).

Launch the server

$ pserve development.ini # launch the server on 0.0.0.0:6543

Start the client

import boto
from ddbmock import connect_boto_network

Use the provided helper to connect your *own* endpoint
db = connect_boto_network()

3

http://aws.amazon.com/dynamodb/

DynamoDB-mock Documentation, Release 0.4.0

Done ! just use it wherever in your project as usual.
db.list_tables() # get list of tables (empty at this stage)

Note: if you do not want to import ddbmock only for the helper, here is a reference implementation:

def connect_boto_network(host=’localhost’, port=6543):
import boto
from boto.regioninfo import RegionInfo
endpoint = ’{}:{}’.format(host, port)
region = RegionInfo(name=’ddbmock’, endpoint=endpoint)
return boto.connect_dynamodb(region=region, port=port, is_secure=False)

Run as a standalone library

Ideal for unit testing or small scale automated functional tests. Nice to play around with boto DynamoDB API too :)

import boto
from ddbmock import connect_boto_patch

Wire-up boto and ddbmock together
db = connect_boto_patch()

Done ! just use it wherever in your project as usual.
db.list_tables() # get list of tables (empty at this stage)

Note, to clean patches made in boto.dynamodb.layer1, you can call clean_boto_patch() from the same
module.

Advanced usage

A significant part of ddbmock is now configurable through ddbmock.config parameters. This includes the storage
backend.

By default, ddbmock has no persitence and stores everything in-memory. Alternatively, you can use the SQLite
storage engine but be warned that it will be slower. To switch the backend, you will to change a configuration variable
before creating the first table.

from ddbmock import config

switch to sqlite backend
config.STORAGE_ENGINE_NAME = ’sqlite’
define the database path. defaults to ’dynamo.db’
config.STORAGE_SQLITE_FILE = ’/tmp/my_database.sqlite’

Please note that ddbmock does not persist table metadata currently. As a consequence, you will need to create the
tables at each restart even with the SQLite backend. This is hoped to be improved in future releases.

See https://bitbucket.org/Ludia/dynamodb-mock/src/tip/ddbmock/config.py for a full list of parameters.

2.1.2 Current Status

This documents reflects ddbmock status as of 5/11/2012. It may be outdated.

Some items are marked as “WONTFIX”. These are throttling related. The goal of ddbmock is to help you with tests
and planification. It won’t get in your way.

4 Chapter 2. Documentation

https://bitbucket.org/Ludia/dynamodb-mock/src/tip/ddbmock/config.py

DynamoDB-mock Documentation, Release 0.4.0

Methods support

• CreateTable DONE

• DeleteTable DONE

• UpdateTable DONE

• DescribeTable DONE

• GetItem DONE

• PutItem DONE

• DeleteItem DONE

• UpdateItem ALMOST

• BatchGetItem DONE*

• BatchWriteItem DONE*

• Query DONE

• Scan DONE*

There basically are no support for ExclusiveStartKey, and their associated features at all in ddbmock. This
affects all “*” operations. Query is the only exception.

UpdateItem has a different behavior when the target item did not exist prior the update operation. In particular, the
ADD operator will always behave as though the item existed before.

Comparison Operators

Some comparison might not work as expected on binary data as it is performed on the base64 representation instead
of the binary one. Please report a bug if this is a problem for you, or, even better, open a pull request :)

All operators exists as lower case functions in ddbmock.database.comparison. This list can easily be ex-
tended to add new/custom operators.

Common to Query and Scan

• EQ DONE

• LE DONE

• LT DONE

• GE DONE

• GT DONE

• BEGINS_WITH DONE

• BETWEEN DONE

Specific to Scan

• NULL DONE

• NOT_NULL DONE

2.1. User guide 5

DynamoDB-mock Documentation, Release 0.4.0

• CONTAINS DONE

• NOT_CONTAINS DONE

• IN DONE

IN operator is the only that can not be imported directly as it overlaps builtin in keyword. If you need it, either import
it with getattr on the module or as in_test which, anyway, is its internal name.

Return value specifications

• NONE DONE

• ALL_OLD DONE

• ALL_NEW DONE

• UPDATED_OLD DONE

• UPDATED_NEW DONE

Please note that only UpdateItem supports the 5. Other compatible nethods understands only the 2 first.

Rates and size limitations

basically, none are supported yet

Request rate

• Throttle read operations when provisioned throughput exceeded. WONTFIX

• Throttle write operations when provisioned throughput exceeded. WONTFIX

• Throughput usage logging for planification purpose. DONE

• Maximum throughput is 10,000. DONE

• Minimum throughput is 1. DONE

• Report accurate throughput. DONE

Request size

• Limit response size to 1MB. TODO

• Limit request size to 1MB. TODO

• Limit BatchGetItem to 100 per request. TODO

• Linit BatchWriteItem to 25 per request. TODO

Table managment

• No more than 256 tables. DONE

• No more than 10 CREATING tables. WONTFIX

• No more than 10 DELETING tables. WONTFIX

6 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.4.0

• No more than 10 UPDATING tables. WONTFIX

• No more than 1 Throughput decrease/calendar day. DONE

• No more than *2 Throughput increase/update. DONE

Types and items Limitations

• Table names can only be between 3 and 255 bytes long. DONE

• Table names can only contains a-z, A-Z, 0-9, ‘_’, ‘-‘, and ‘.’. DONE

• No more than 64kB/Item including fieldname but not indexing overhead. DONE

• Primary key names can only be between 1 and 255 bytes long. DONE

• Attribute value can not be Null. DONE

• hash_key value maximu 2048 bytes. DONE

• range_key value maximu 1024 bytes. DONE

• Numbers max 38 digits precision; between 10^-128 and 10^+126. DONE

Table description

• item count. DONE

• data size. DONE

• date: creation. DONE

• date: last throughput increase. DONE

• date: last throughput decrease. DONE

Dates are represented as float timestamps using scientific notation by DynamoDB but we only send them as plain
number, not caring about the representation. Most parsers won’t do any difference anyway.

2.1.3 Planifications with ddbmock

DynamoDB-Mock has two main goals. Speeding up tests and helping you plan your real DynamoDB usage. This
includes both the throughput and the disk usage.

Getting disk usage

To get per table disk usage, feedback, one can issue a call to DescribeTable method. the informations returned
are accurate in the sense of DynamoDB but beware, these are also by far below the real usage in ddbmock as there are
asbsolutly no optimisations done on our side.

Getting Throughput usage

To get per table throughput usage you can rely on the dedicated logger utils.tp_logger. By default, min, max
and average throughput are logged every 5 minutes and at the end of the program via an atexit handler.

Note that the handler is hooked to NullHandler handler by default so that there should not be any noise in the
console.

2.1. User guide 7

DynamoDB-mock Documentation, Release 0.4.0

To get statistics more often, you can change config.STAT_TP_AGGREG value before issueing any requests to
ddbmock. __init__ may be a good place to do so.

For example, if you want to get statistics to the console every 15 seconds, you can use a code like this :

from ddbmock import config
from ddbmock.utils import tp_logger
import logging

config.STAT_TP_AGGREG = 15 # every 15 sec
tp_logger.addHandler(logging.StreamHandler()) # to console

Depending on how your your application scales, it may be interesting to run a representative secnario with multiples
users and se how the throughput proportions. this will be a very valuable information when going live.

General logging

Logger utils.req_logger traces request body, response and errors if applicable. Each log entry starts with
request_id=.... This allows you to keep track of each individual requests even in a higly concurent environ-
nement.

By default, all is logged to NullHandler and you should at leaste hook a logging.StreamHandler to have a
console output.

2.1.4 Extending DynamoDB-mock

Get the source Luke

$ hg clone ssh://hg@bitbucket.org/Ludia/dynamodb-mock
$ pip install nose nosexcover coverage mock webtests boto
$ python setup.py develop
$ nosetests # --no-skip to run boto integration tests too

Folder structure

DynamoDB-Mock
+-- ddbmock
| +-- database => request engine
| | ‘-- storage => storage backend
| +-- operations => each DynamoDB operation has a route here
| +-- router => entry-points logic
| ‘-- validators => request syntax validation middleware
+-- docs
| ‘-- pages
‘-- tests

+-- unit => mainly details and corner cases tests
‘-- functional

+-- boto => main/extensive tests
‘-- pyramid => just make sure that all methods are supported

Request flow: the big picture

Just a couple of comments here:

8 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.4.0

Figure 2.1: Global request flow

• The router relies on introspection to find the validators (if any)

• The router relies on introspection to find the routes

• The database engine relies on introspection to find the configured storage backend

• There is a “catch all” in the router that maps to DynamoDB internal server error

Adding a method

As long as the method follows DynamoDB request structure, it is mostly a matter of adding a file to
ddbmock/routes with the following conventions:

• file_name: “underscore” version of the camel case method name.

• function_name: file_name.

• argument: parsed post payload.

• return: response dict.

Example: adding a HelloWorld method:

-*- coding: utf-8 -*-
module: ddbmock.routes.hello_world.py

def hello_world(post):
return {

’Hello’: ’World’
}

If the post of your method contains TableName, you may auto-load the corresponding table this way:

-*- coding: utf-8 -*-
module: ddbmock.routes.hello_world.py

from ddbmock.utils import load_table()

@load_table
def hello_world(post):

return {
’Hello’: ’World’

}

2.1. User guide 9

DynamoDB-mock Documentation, Release 0.4.0

Adding a validator

Let’s say you want to let your new HelloWorld greet someone in particular, you will want to add an argument to
the request.

Example: simplest way to add support for an argument:

-*- coding: utf-8 -*-
module: ddbmock.routes.hello_world.py

def hello_world(post):
return {

’Hello’: ’World (and "{you}" too!)’.format(you=post[’Name’]
}

Wanna test it?

>>> curl -d ’{"Name": "chuck"}’ -H ’x-amz-target: DynamoDB_custom.HelloWorld’ localhost:6543
{’Hello’: ’World (and "chuck" too!)’}

But this is most likely to crash the server if ‘Name’ is not in Post. This is where Voluptuous comes.

In ddbmock, all you need to do to enable automatic validations is to add a file with the underscore name in
ddbmock.validators. It must contain a post member with the rules.

Example: HelloWorld validator for HelloWorld method:

-*- coding: utf-8 -*-
module: ddbmock.validators.hello_world.py

post = {
u’Name’: unicode,

}

Done !

Adding a storage backend

Storage backends lives in ‘ddbmock/database/storage’. There are currently two of them built-in. Basic “in-memory”
(default) and “sqlite” to add persistence.

As for the methods, storage backends follow conventions to keep the code lean

• they must be in ddbmock.database.storage module

• they must implement Store class following this outline

-*- coding: utf-8 -*-

in case you need to load configuration constants
from ddbmock import config

the name can *not* be changed.
class Store(object):

def __init__(self, name):
""" Initialize the in-memory store
:param name: Table name.
"""
TODO

10 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.4.0

def truncate(self):
"""Perform a full table cleanup. Might be a good idea in tests :)"""
TODO

def __getitem__(self, (hash_key, range_key)):
"""Get item at (‘‘hash_key‘‘, ‘‘range_key‘‘) or the dict at ‘‘hash_key‘‘ if
‘‘range_key‘‘ is None.

:param key: (‘‘hash_key‘‘, ‘‘range_key‘‘) Tuple. If ‘‘range_key‘‘ is None, all keys under ‘‘hash_key‘‘ are returned
:return: Item or item dict

:raise: KeyError
"""
TODO

def __setitem__(self, (hash_key, range_key), item):
"""Set the item at (‘‘hash_key‘‘, ‘‘range_key‘‘). Both keys must be
defined and valid. By convention, ‘‘range_key‘‘ may be ‘‘False‘‘ to
indicate a ‘‘hash_key‘‘ only key.

:param key: (‘‘hash_key‘‘, ‘‘range_key‘‘) Tuple.
:param item: the actual ‘‘Item‘‘ data structure to store
"""
TODO

def __delitem__(self, (hash_key, range_key)):
"""Delete item at key (‘‘hash_key‘‘, ‘‘range_key‘‘)

:raises: KeyError if not found
"""
TODO

def __iter__(self):
""" Iterate all over the table, abstracting the ‘‘hash_key‘‘ and
‘‘range_key‘‘ complexity. Mostly used for ‘‘Scan‘‘ implementation.
"""
TODO

As an example, I recommend to study “memory.py” implementation. It is pretty straight-forward and well commented.
You get the whole package for only 63 lines :)

2.1.5 Change log - Migration guide.

ddbmock 0.4.0

This section documents all user visible changes included between ddbmock versions 0.3.2 and versions 0.4.0

This iteration wa focused on modularity and planification.

Additions

• consistent_read parameter to Query

• central config.py file with all constraints

• timer for table status changes

2.1. User guide 11

DynamoDB-mock Documentation, Release 0.4.0

• full Query support

• throughput statistics to help plan real usage

• pre-instanciate DynamoDB as dynamodb

• datastore API

– bundle memory store

– bundle sqlite store

– add config param to switch

• clean_boto_patch to restore original boto.dynamodb behavior

• allow ConsistentRead on a per-table basis for BatchGetItem

Removal

• legacy connect_boto and connect_ddbmock

• dynamodb_api_validate decorator. It is now called automatically

• wrap_exceptions decorator. It is now integrated to the router

• minimum throughput change of 10 %

Changes

• global refactoring

• rename routes module to operations for consistency with DynamoDB

• Move from Voluptuous to Onctuous for validations, less code

• fix server startup with pserver (bad backage name)

• fix server crash on validation exception (bad serialization)

• accurate throughput for all Read operations

• accurate throughput for all Write operations

• move ‘views’ to ‘routes’

• remove all pyramid code from ‘views’/’routes’

• pyramid and boto entry points now shares most of the router

• UpdateItem failed to save keys properly

• integrate boto dynamodb integration tests to test suite (disabled unless ‘–no-skip’)

• do not require (real) user credentials in boto patch version (#5)

Upgrade

• rename connect_boto to connect_boto_patch

• rename connect_ddbmock to connect_boto_network

• rename all DynamoDB() to ‘‘dynamodb

12 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.4.0

• replace ...import DynamoDB by ... import dynamodb

ddbmock 0.3.2

This section documents all user visible changes included between ddbmock versions 0.3.1 and versions 0.3.2

This iteration was focused on passing boto integration tests.

Additions

• preliminary batchWriteItem support

Changes

• fix number validation

• fix: item where created by defaultdict magic when looking for bogus item.

• return no Item field when not found, but empty when filtered

• [botopatch] handle DynamoDBConditionalCheckFailedError error

ddbmock 0.3.1

This section documents all user visible changes included between ddbmock versions 0.3.0 and versions 0.3.1

This iteration was focused on accuracy

Additions

• 100% tests coverage

• add basic tests for pyramid entry-point (#1)

• add plenty of unit and functional tests. Coverage is 100%

• add support for all ALL_OLD ALL_NEW UPDATED_OLD UPDATED_NEW in UpdateItem

• add accurate field size calculation

• add accurate item size calculation

• add accurate table size calculation

• add MAX_TABLES check at table creation

Changes

• accurate table statuses

• fix pyramid entry-point

• fix list validations. Len limitation was not working

• attempt to store empty field/set raise ValidationError (#4)

• accurate exception detection and reporting in UpdateTable

2.1. User guide 13

DynamoDB-mock Documentation, Release 0.4.0

• accurate hash_key and range_key size validation

• accurate number limitations (max 38 digits precision; between 10^-128 and 10^+126)

• rename connect_boto to connect_boto_patch + compat layer

• rename connect_ddbmock to connect_boto_network + compat layer

• block PutItem/UpdateItem when bigger than MAX_ITEM_SIZE

Upgrade

Nothing mandatory as this is a minor release but, I recommend that you:

• rename connect_boto to connect_boto_patch

• rename connect_ddbmock to connect_boto_network

ddbmock 0.3.0

Initial ddbmock release. This is alpha quality sofware. Some import features such as “Excusive Start Key”, “Reverse”
and “Limit” as well as BatchWriteItem have not been written (yet).

Additions

• entry-point WEB (network mode)

• entry-point Boto (standalone mode)

• support for CreateTable method

• support for DeleteTable method

• support for UpdateTable method

• support for DescribeTable method

• support for GetItem method

• support for PutItem method

• support for DeleteItem method

• support for UpdateItem method (small approximations)

• support for BatchGetItem method (initial)

• support for Query method (initial)

• support for Scan method (initial)

• all comparison operators

• aggresive input validation

Known bugs - limitations

• no support for BatchWriteItem

• no support for “Excusive Start Key”, “Reverse” and “Limit” in Query and Scan

14 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.4.0

• no support for “UnprocessedKeys” in BatchGetItem

• Web entry-point is untested, fill bugs if necessary :)

2.2 Indices and tables

• genindex

• modindex

• search

2.2. Indices and tables 15

DynamoDB-mock Documentation, Release 0.4.0

16 Chapter 2. Documentation

CHAPTER

THREE

CONTRIBUTE

Want to contribute, report a but of request a feature ? The development goes on BitBucket:

• Download: http://pypi.python.org/pypi/ddbmock

• Report bugs: https://bitbucket.org/Ludia/dynamodb-mock/issues

• Fork the code: https://bitbucket.org/Ludia/dynamodb-mock/overview

17

http://pypi.python.org/pypi/ddbmock
https://bitbucket.org/Ludia/dynamodb-mock/issues
https://bitbucket.org/Ludia/dynamodb-mock/overview

