
DynamoDB-mock Documentation
Release 0.3.0

Jean-Tiare Le Bigot

October 11, 2012

CONTENTS

i

ii

CHAPTER

ONE

OVERVIEW

DynamoDB is a minimalistic NoSQL engine provided by Amazon as a part of their AWS product.

DynamoDB is great in production environement but sucks when testing your application. Tables needs roughtly 1
min to be created, deleted or updated. Items operation rates depends on how much you pay and tests will conflict if 2
developers run them at the same time.

ddbmock brings a tiny in-memory(tm) implementation of DynamoDB API. It can either be run as a stand alone server
or as a regular library helping you to build lightning fast unit and functional tests :)

ddbmock does not intend to be production ready. It will loose you data. you’ve been warned! I currently recommend
the “boto extension” mode for unit-tests and the “server” mode for functional tests.

1

http://aws.amazon.com/dynamodb/

DynamoDB-mock Documentation, Release 0.3.0

2 Chapter 1. Overview

CHAPTER

TWO

DOCUMENTATION

2.1 User guide

2.1.1 Getting started with DynamoDB-mock

DynamoDB is a minimalistic NoSQL engine provided by Amazon as a part of their AWS product.

DynamoDB is great in production environement but sucks when testing your application. Tables needs roughtly 1
min to be created, deleted or updated. Items operation rates depends on how much you pay and tests will conflict if 2
developers run them at the same time.

ddbmock brings a tiny in-memory(tm) implementation of DynamoDB API. It can either be run as a stand alone server
or as a regular library helping you to build lightning fast unit and functional tests :)

ddbmock does not intend to be production ready. It will loose you data. you’ve been warned! I currently recommend
the “boto extension” mode for unit-tests and the “server” mode for functional tests.

Installation

$ pip install ddbmock

Example usage

Run as Regular client-server

Ideal for test environment. For stage and production I highly recommend using DynamoDB servers. ddbmock comes
with no warranty and will loose your data(tm).

$ pserve development.ini # launch the server on 0.0.0.0:6543

import boto
from ddbmock import connect_ddbmock

Use the provided helper to connect your *own* endpoint
db = connect_ddbmock()

Done ! just use it wherever in your project as usual.
db.list_tables() # get list of tables (empty at this stage)

Note: if you do not want to import ddbmock only for the helper, here is a reference implementation:

3

http://aws.amazon.com/dynamodb/

DynamoDB-mock Documentation, Release 0.3.0

def connect_ddbmock(host=’localhost’, port=6543):
import boto
from boto.regioninfo import RegionInfo
endpoint = ’{}:{}’.format(host, port)
region = RegionInfo(name=’ddbmock’, endpoint=endpoint)
return boto.connect_dynamodb(region=region, port=port, is_secure=False)

Run as a standalone library

Ideal for unit testing or small scale automated functional tests. Nice to play around with boto DynamoDB API too :)

import boto
from ddbmock import connect_boto

Wire-up boto and ddbmock together
db = connect_boto()

Done ! just use it wherever in your project as usual.
db.list_tables() # get list of tables (empty at this stage)

2.1.2 Current Status

This documents reflects ddbmock status as of 3/10/12. It may be outdated.

Methods support

• CreateTable DONE

• DeleteTable DONE

• UpdateTable DONE

• DescribeTable DONE

• GetItem DONE

• PutItem DONE

• DeleteItem DONE

• UpdateItem ALMOST

• BatchGetItem WIP

• BatchWriteItem TODO

• Query WIP

• Scan WIP

There is basically no support for Limit, ExclusiveStartKey, ScanIndexForward and their associated fea-
tures at all in ddbmock. This affects all “WIP” functions.

UpdateItem has a different behavior when the target item did not exist prior the update operation. In particular, the
ADD operator will always behave as though the item existed before.

4 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.3.0

Comparison Operators

Some comparison might not work as expected on binary data as it is performed on the base64 representation instead
of the binary one. Please report a bug if this is a problem for you, or, even better, open a pull request :)

All operators exists as lower case functions in ddbmock.database.comparison. This list can easily be ex-
tended to add new/custom operators.

Common to Query and Scan

• EQ DONE

• LE DONE

• LT DONE

• GE DONE

• GT DONE

• BEGINS_WITH DONE

• BETWEEN DONE

Specific to Scan

• NULL DONE

• NOT_NULL DONE

• CONTAINS DONE

• NOT_CONTAINS DONE

• IN DONE

IN operator is the only that can not be imported directly as it overlaps builtin in keyword. If you need it, either import
it with getattr on the module or as in_test which, anyway, is its internal name.

Rates and size limitations

basically, none are supported yet

Request rate

• Throttle read operations when provisioned throughput exceeded. TODO

• Throttle write operations when provisioned throughput exceeded. TODO

• Maximum throughput is 10,000. DONE

• Minimum throughput is 1. DONE

• Report accurate throughput. WONT FIX

ddbmock currently reports the consumed throughput based on item count. Their size is ignored from the computation.
While it is theoretically possible, it would no be accurate anyway because we can not reproduce exactly Amazon’s
storage efficiency.

Actually, this is even trickier as the throughput is normally spreaded among partitions which ddbmock does not handle.

2.1. User guide 5

DynamoDB-mock Documentation, Release 0.3.0

Request size

• Limit response size to 1MB. TODO

• Limit request size to 1MB. TODO

• Limit BatchGetItem to 100 per request. TODO

• Linit BatchWriteItem to 25 per request. TODO

Table managment

• No more than 255 tables. TODO

• No more than 10 CREATING tables. TODO

• No more than 10 DELETING tables. TODO

• No more than 1 UPDATING table. TODO

• No more than 1 Throughput decrease/calendar day. BUGGY (24h instead of calendar day)

• No more than *2 Throughput increase/update. DONE

• At least 10% change per update. TODO

Types and items Limitations

• Table names can only be between 3 and 255 bytes long. DONE

• Table names can only contains a-z, A-Z, 0-9, ‘_’, ‘-‘, and ‘.’. DONE

• No more than 64kB/Item including fieldname and indexing overhead. TODO

• Primary key names can only be between 1 and 255 bytes long. DONE

• Attribute value can not be Null. DONE

• hash_key value smaller than 2048 bytes. TODO

• range_key value smaller than 1024 bytes. TODO

• Numbers can have up to 38 digits precision and can be between 10^-128 to 10^+126. PARTIAL

2.1.3 Change log - Migration guide.

ddbmock 0.3

Initial ddbmock release. This is alpha quality sofware. Some import features such as “Excusive Start Key”, “Reverse”
and “Limit” as well as BatchWriteItem have not been written (yet).

Additions

• entry-point WEB (network mode)

• entry-point Boto (standalone mode)

• support for CreateTable method

• support for DeleteTable method

6 Chapter 2. Documentation

DynamoDB-mock Documentation, Release 0.3.0

• support for UpdateTable method

• support for DescribeTable method

• support for ‘‘GetItem method

• support for PutItem method

• support for DeleteItem method

• support for UpdateItem method (small approximations)

• support for BatchGetItem method (initial)

• support for Query method (initial)

• support for Scan method (initial)

• all comparison operators

• aggresive input validation

Known bugs - limitations

• no support for BatchWriteItem

• no support for “Excusive Start Key”, “Reverse” and “Limit” in

Query and Scan - no support for “UnprocessedKeys” in BatchGetItem - Web entry-point is untested, fill bugs if
necessary :)

2.2 Indices and tables

• genindex

• modindex

• search

2.2. Indices and tables 7

DynamoDB-mock Documentation, Release 0.3.0

8 Chapter 2. Documentation

CHAPTER

THREE

CONTRIBUTE

Want to contribute, report a but of request a feature ? The development goes on BitBucket:

• Download: http://pypi.python.org/pypi/ddbmock

• Report bugs: https://bitbucket.org/Ludia/dynamodb-mock/issues

• Fork the code: https://bitbucket.org/Ludia/dynamodb-mock/overview

9

http://pypi.python.org/pypi/ddbmock
https://bitbucket.org/Ludia/dynamodb-mock/issues
https://bitbucket.org/Ludia/dynamodb-mock/overview

